Showing posts with label Energy. Show all posts
Showing posts with label Energy. Show all posts

Wednesday, March 9, 2016

Converting atmospheric carbon dioxide into batteries


An interdisciplinary team of scientists has worked out a way to make electric vehicles that are not only carbon neutral, but carbon negative, capable of actually reducing the amount of atmospheric carbon dioxide as they operate.

They have done so by demonstrating how the graphite electrodes used in the lithium-ion batteries that power electric automobiles can be replaced with carbon material recovered from the atmosphere.

The recipe for converting carbon dioxide gas into batteries is described in the paper titled "Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes" published in the Mar. 2 issue of the journal ACS Central Science.

The unusual pairing of carbon dioxide conversion and advanced battery technology is the result of a collaboration between the laboratory of Assistant Professor of Mechanical Engineering Cary Pint at Vanderbilt University and Professor of Chemistry Stuart Licht at George Washington University.

The team adapted a solar-powered process that converts carbon dioxide into carbon so that it produces carbon nanotubes and demonstrated that the nanotubes can be incorporated into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid.

"This approach not only produces better batteries but it also establishes a value for carbon dioxide recovered from the atmosphere that is associated with the end-user battery cost unlike most efforts to reuse CO2 that are aimed at low-valued fuels, like methanol, that cannot justify the cost required to produce them," said Pint.

The project builds upon a solar thermal electrochemical process (STEP) that can create carbon nanofibers from ambient carbon dioxide developed by the Licht group and described in the journal Nano Letters last August. STEP uses solar energy to provide both the electrical and thermal energy necessary to break down carbon dioxide into carbon and oxygen and to produce carbon nanotubes that are stable, flexible, conductive and stronger than steel.

"Our climate change solution is two fold: (1) to transform the greenhouse gas carbon dioxide into valuable products and (2) to provide greenhouse gas emission-free alternatives to today's industrial and transportation fossil fuel processes," said Licht. "In addition to better batteries other applications for the carbon nanotubes include carbon composites for strong, lightweight construction materials, sports equipment and car, truck and airplane bodies."

 



Joining forces with Pint, whose research interests are focused on using carbon nanomaterials for battery applications, the two laboratories worked together to show that the multi-walled carbon nanotubes produced by the process can serve as the positive electrode in both lithium-ion and sodium-ion batteries.

In lithium-ion batteries, the nanotubes replace the carbon anode used in commercial batteries. The team demonstrated that the carbon nanotubes gave a small boost to the performance, which was amplified when the battery was charged quickly. In sodium-ion batteries, the researchers found that small defects in the carbon, which can be tuned using STEP, can unlock stable storage performance over 3.5 times above that of sodium-ion batteries with graphite electrodes. Most importantly, both carbon-nanotube batteries were exposed to about 2.5 months of continuous charging and discharging and showed no sign of fatigue.

Depending on the specifications, making one of the two electrodes out of carbon nanotubes means that up to 40 percent of a battery could be made out of recycled CO2, Pint estimated. This does not include the outer protective packaging but he suggested that processes like STEP could eventually produce the packaging as well.

The researchers estimate that with a battery cost of $325 per kWh (the average cost of lithium-ion batteries reported by the Department of Energy in 2013), a kilogram of carbon dioxide has a value of about $18 as a battery material - six times more than when it is converted to methanol - a number that only increases when moving from large batteries used in electric vehicles to the smaller batteries used in electronics. And unlike methanol, combining batteries with solar cells provides renewable power with zero greenhouse emissions, which is needed to put an end to the current carbon cycle that threatens future global sustainability.

Licht also proposed that the STEP process could be coupled to a natural gas powered electrical generator. The generator would provide electricity, heat and a concentrated source of carbon dioxide that would boost the performance of the STEP process. At the same time, the oxygen released in the process could be piped back to the generator where it would boost the generator's combustion efficiency to compensate for the amount of electricity that the STEP process consumes. The end result could be a fossil fuel electrical power plant with zero net CO2 emissions.

"Imagine a world where every new electric vehicle or grid-scale battery installation would not only enable us to overcome the environmental sins of our past, but also provide a step toward a sustainable future for our children," said Pint. "Our efforts have shown a path to achieve such a future."

Monday, December 7, 2015

Nanostructured germanium for portable photovoltaics and battery electrodes


New approaches for hybrid solar cells

 

Using a new procedure researchers at the Technical University of Munich (TUM) and the Ludwig Maximillians University of Munich (LMU) can now produce extremely thin and robust, yet highly porous semiconductor layers. A very promising material – for small, light-weight, flexible solar cells, for example, or electrodes improving the performance of rechargeable batteries.

The coating on the wafer that Professor Thomas Fässler, chair of Inorganic Chemistry with a Focus on Novel Materials at TU Munich, holds in his hands glitters like an opal. And it has amazing properties: It is hard as a crystal, exceptionally thin and – since it is highly porous – light as a feather.

By integrating suitable organic polymers into the pores of the material, the scientists can custom tailor the electrical properties of the ensuing hybrid material. The design not only saves space, it also creates large interface surfaces that improve overall effectiveness.

“You can imagine our raw material as a porous scaffold with a structure akin to a honeycomb. The walls comprise inorganic, semiconducting germanium, which can produce and store electric charges. Since the honeycomb walls are extremely thin, charges can flow along short paths,” explains Fässler.

The new design: bottom-up instead of top-down

But, to transform brittle, hard germanium into a flexible and porous layer the researchers had to apply a few tricks. Traditionally, etching processes are used to structure the surface of germanium. However, this top-down approach is difficult to control on an atomic level. The new procedure solves this problem.

Together with his team, Fässler established a synthesis methodology to fabricate the desired structures very precisely and reproducibly. The raw material is germanium with atoms arranged in clusters of nine. Since these clusters are electrically charged, they repel each other as long as they are dissolved. Netting only takes place when the solvent is evaporated.

This can be easily achieved by applying heat of 500 °C or it can be chemically induced, by adding germanium chloride, for example. By using other chlorides like phosphorous chloride the germanium structures can be easily doped. This allows the researchers to directly adjust the properties of the resulting nanomaterials in a very targeted manner.

Tiny synthetic beads as nanotemplates

To give the germanium clusters the desired porous structure, the LMU researcher Dr. Dina Fattakhova-Rohlfing has developed a methodology to enable nanostructuring: Tiny polymer beads form three-dimensional templates in an initial step.

In the next step, the germanium-cluster solution fills the gaps between the beads. As soon as stable germanium networks have formed on the surface of the tiny beads, the templates are removed by applying heat. What remains is the highly porous nanofilm.

The deployed polymer beads have a diameter of 50 to 200 nanometers and form an opal structure. The germanium scaffold that emerges on the surface acts as a negative mold – an inverse opal structure is formed. Thus, the nanolayers glitter like an opal.

“The porous germanium alone has unique optical and electrical properties that many energy relevant applications can profit from,” says LMU researcher Dr. Dina Fattakhova-Rohlfing, who, in collaboration with Fässler, developed the material. “Beyond that, we can fill the pores with a wide variety of functional materials, thereby creating a broad range of novel hybrid materials.”



Nanolayers pave the road to portable photovoltaic solutions

“When combined with polymers, porous germanium structures are suitable for the development of a new generation of stable, extremely light-weight and flexible solar cells that can charge mobile phones, cameras and laptops while on the road,” explains the physicist Peter Müller-Buschbaum, professor of functional materials at TU Munich.

Manufacturers around the world are on the lookout for light-weight and robust materials to use in portable solar cells. To date they have used primarily organic compounds, which are sensitive and have relatively short lifetimes. Heat and light decompose the polymers and cause the performance to degrade. Here, the thin but robust germanium hybrid layers provide a real alternative.

Nanolayers for new battery systems

Next, the researchers want to use the new technology to manufacture highly porous silicon layers. The layers are currently being tested as anodes for rechargeable batteries. They could conceivably replace the graphite layers currently used in batteries to improve their capacity.

The research was funded by the “Solar Technologies Go Hybrid” program of the Bavarian State Ministry of Science, in the context of the excellence cluster “Nanosystems Initiative Munich (NIM), the German Research Foundation (DFG) and the Center for Nanosciences (CeNS).



Publication:

Zintl Clusters as Wet Chemical Precursors for Germanium Nanomorphologies with Tunable Composition; Manuel M. Bentlohner, Markus Waibel, Patrick Zeller, Kuhu Sarkar, Peter Müller-Buschbaum, Dina Fattakhova-Rohlfing, Thomas F. Fässler
Angewandte Chemie, online 03.12.2015 – DOI: 10.1002/ange.201508246



http://www.nanotechnologyworld.org/?draft=true#!Nanostructured-germanium-for-portable-photovoltaics-and-battery-electrodes/c89r/56659a740cf28314431b0321 

Friday, December 4, 2015

Storing electricity in paper



One sheet, 15 centimetres in diameter and a few tenths of a millimetre thick can store as much as 1 F, which is similar to the supercapacitors currently on the market. The material can be recharged hundreds of times and each charge only takes a few seconds.

It’s a dream product in a world where the increased use of renewable energy requires new methods for energy storage – from summer to winter, from a windy day to a calm one, from a sunny day to one with heavy cloud cover.

”Thin films that function as capacitors have existed for some time. What we have done is to produce the material in three dimensions. We can produce thick sheets,” says Xavier Crispin, professor of organic electronics and co-author to the article just published in Advanced Science.
Other co-authors are researchers from KTH Royal Institute of Technology, Innventia, Technical University of Denmark and the University of Kentucky.

The material, power paper, looks and feels like a slightly plasticky paper and the researchers have amused themselves by using one piece to make an origami swan – which gives an indication of its strength.

The structural foundation of the material is nanocellulose, which is cellulose fibres which, using high-pressure water, are broken down into fibres as thin as 20 nm in diameter. With the cellulose fibres in a solution of water, an electrically charged polymer (PEDOT:PSS), also in a water solution, is added. The polymer then forms a thin coating around the fibres.

”The covered fibres are in tangles, where the liquid in the spaces between them functions as an electrolyte,” explains Jesper Edberg, doctoral student, who conducted the experiments together with Abdellah Malti, who recently completed his doctorate.

The new cellulose-polymer material has set a new world record in simultaneous conductivity for ions and electrons, which explains its exceptional capacity for energy storage. It also opens the door to continued development toward even higher capacity. Unlike the batteries and capacitors currently on the market, power paper is produced from simple materials – renewable cellulose and an easily available polymer. It is light in weight, it requires no dangerous chemicals or heavy metals and it is waterproof.

The Power Papers project has been financed by the Knut and Alice Wallenberg Foundation since 2012.

”They leave us to our research, without demanding lengthy reports, and they trust us. We have a lot of pressure on us to deliver, but it’s ok if it takes time, and we’re grateful for that,” says Professor Magnus Berggren, director of the Laboratory of Organic Electronics at Linköping University.

The new power paper is just like regular pulp, which has to be dehydrated when making paper. The challenge is to develop an industrial-scale process for this.

”Together with KTH, Acreo and Innventia we just received SEK 34 million from the Swedish Foundation for Strategic Research to continue our efforts to develop a rational production method, a paper machine for power paper,” says Professor Berggren.

Power paper – Four world records

Highest charge and capacitance in organic electronics, 1 C and 2 F (Coulomb and Farad).
Highest measured current in an organic conductor, 1 A (Ampere).
Highest capacity to simultaneously conduct ions and electrons.
Highest transconductance in a transistor, 1 S (Siemens)

Publication:

An Organic Mixed Ion-Electron Conductor for Power Electronics, Abdellah Malti, Jesper Edberg, Hjalmar Granberg, Zia Ullah Khan, Jens W Andreasen, Xianjie Liu, Dan Zhao, Hao Zhang, Yulong Yao, Joseph W Brill, Isak Engquist, Mats Fahlman, Lars Wågberg, Xavier Crispin and Magnus Berggren.  Advanced Science, DOI 10.1002/advs.201500305

Wednesday, December 2, 2015

New plastic solar cell minimizes loss of photon energy


A Japanese research team demonstrates an unconventional means to achieve more efficient and robust conversion of solar energy into electricity

As the world increasingly looks to alternative sources of energy, inexpensive and environmentally friendly polymer-based solar cells have attracted significant attention, but they still do not match the power harvest of their more expensive silicon-based counterparts.

Now, researchers at the RIKEN Center for Emergent Matter Science and Kyoto University's Department of Polymer Chemistry have shown that a newly developed polymer can minimize energy loss as well as silicon-based solar cells when converting photon energy from sunlight to electricity.

Solar cells work because photons from the sun strike electrons and move them into a position where they can create an electric current. Photon energy loss -- the amount of energy lost when converting photons energy from sunlight into electric power -- was greater in polymer-based solar cells than in silicon-based ones.

"In polymer-based plastic solar cells, larger photon energy loss causes lower voltage. This has been one of the largest limiting factors for efficiency," explains Hideo Ohkita, one of the authors of the study, which was published in the Dec. 2, 2015 issue of Nature Communications. "The new polymer has the potential to lead to a breakthrough on this issue."

The group began working with the new polymer, where oxygen rather than sulfur atoms are located at key positions, and found that the new material was able to overcome some of the key obstacles to extracting and utilizing greater energy from sunlight.

"Since this new polymer greatly reduces photon energy loss, it has allowed us to achieve a superb power conversion efficiency of nearly 9% with a very high open-circuit voltage in plastic solar cells," explains Itaru Osaka.

An efficiency of 15% is usually seen as a breakthrough level that will allow polymer-based cells to be commercialized.

"By achieving both a high short-circuit current and a high open-circuit voltage," he continues, "achieving a power conversion efficiency of 15% in single-junction cells is a realistic goal. This would have huge implications for the solar energy sector."

The paper 'High-efficiency polymer solar cells with small photon energy loss' appeared Dec. 2, 2015 in Nature Communications, with doi: 10.1038/ncomms10085

Sunday, November 15, 2015

New design points a path to the ‘ultimate’ battery


Researchers have successfully demonstrated how several of the problems impeding the practical development of the so-called ‘ultimate’ battery could be overcome. 

Scientists have developed a working laboratory demonstrator of a lithium-oxygen battery which has very high energy density, is more than 90% efficient, and, to date, can be recharged more than 2000 times, showing how several of the problems holding back the development of these devices could be solved.

Lithium-oxygen, or lithium-air, batteries have been touted as the ‘ultimate’ battery due to their theoretical energy density, which is ten times that of a lithium-ion battery. Such a high energy density would be comparable to that of gasoline – and would enable an electric car with a battery that is a fifth the cost and a fifth the weight of those currently on the market to drive from London to Edinburgh on a single charge.

However, as is the case with other next-generation batteries, there are several practical challenges that need to be addressed before lithium-air batteries become a viable alternative to gasoline.

Now, researchers from the University of Cambridge have demonstrated how some of these obstacles may be overcome, and developed a lab-based demonstrator of a lithium-oxygen battery which has higher capacity, increased energy efficiency and improved stability over previous attempts.

Their demonstrator relies on a highly porous, ‘fluffy’ carbon electrode made from graphene (comprising one-atom-thick sheets of carbon atoms), and additives that alter the chemical reactions at work in the battery, making it more stable and more efficient. While the results, reported in the journal Science, are promising, the researchers caution that a practical lithium-air battery still remains at least a decade away.

“What we’ve achieved is a significant advance for this technology and suggests whole new areas for research – we haven’t solved all the problems inherent to this chemistry, but our results do show routes forward towards a practical device,” said Professor Clare Grey of Cambridge’s Department of Chemistry, the paper’s senior author.

Many of the technologies we use every day have been getting smaller, faster and cheaper each year – with the notable exception of batteries. Apart from the possibility of a smartphone which lasts for days without needing to be charged, the challenges associated with making a better battery are holding back the widespread adoption of two major clean technologies: electric cars and grid-scale storage for solar power.

“In their simplest form, batteries are made of three components: a positive electrode, a negative electrode and an electrolyte,’’ said Dr Tao Liu, also from the Department of Chemistry, and the paper’s first author.

In the lithium-ion (Li-ion) batteries we use in our laptops and smartphones, the negative electrode is made of graphite (a form of carbon), the positive electrode is made of a metal oxide, such as lithium cobalt oxide, and the electrolyte is a lithium salt dissolved in an organic solvent. The action of the battery depends on the movement of lithium ions between the electrodes. Li-ion batteries are light, but their capacity deteriorates with age, and their relatively low energy densities mean that they need to be recharged frequently.

Over the past decade, researchers have been developing various alternatives to Li-ion batteries, and lithium-air batteries are considered the ultimate in next-generation energy storage, because of their extremely high energy density. However, previous attempts at working demonstrators have had low efficiency, poor rate performance, unwanted chemical reactions, and can only be cycled in pure oxygen.

What Liu, Grey and their colleagues have developed uses a very different chemistry than earlier attempts at a non-aqueous lithium-air battery, relying on lithium hydroxide (LiOH) instead of lithium peroxide (Li2O2). With the addition of water and the use of lithium iodide as a ‘mediator’, their battery showed far less of the chemical reactions which can cause cells to die, making it far more stable after multiple charge and discharge cycles.

By precisely engineering the structure of the electrode, changing it to a highly porous form of graphene, adding lithium iodide, and changing the chemical makeup of the electrolyte, the researchers were able to reduce the ‘voltage gap’ between charge and discharge to 0.2 volts. A small voltage gap equals a more efficient battery – previous versions of a lithium-air battery have only managed to get the gap down to 0.5 – 1.0 volts, whereas 0.2 volts is closer to that of a Li-ion battery, and equates to an energy efficiency of 93%.

The highly porous graphene electrode also greatly increases the capacity of the demonstrator, although only at certain rates of charge and discharge. Other issues that still have to be addressed include finding a way to protect the metal electrode so that it doesn’t form spindly lithium metal fibres known as dendrites, which can cause batteries to explode if they grow too much and short-circuit the battery.

Additionally, the demonstrator can only be cycled in pure oxygen, while the air around us also contains carbon dioxide, nitrogen and moisture, all of which are generally harmful to the metal electrode.

“There’s still a lot of work to do,” said Liu. “But what we’ve seen here suggests that there are ways to solve these problems – maybe we’ve just got to look at things a little differently.”

“While there are still plenty of fundamental studies that remain to be done, to iron out some of the mechanistic details, the current results are extremely exciting – we are still very much at the development stage, but we’ve shown that there are solutions to some of the tough problems associated with this technology,” said Grey.

The authors acknowledge support from the US Department of Energy, the Engineering and Physical Sciences Research Council (EPSRC), Johnson Matthey and the European Union via Marie Curie Actions and the Graphene Flagship. The technology has been patented and is being commercialised through Cambridge Enterprise, the University’s commercialisation arm.