Showing posts with label spectroscopy. Show all posts
Showing posts with label spectroscopy. Show all posts

Thursday, August 29, 2013

Almost as sensitive as a dog’s nose

Using carbon nanotubes, a research team led by Professor Hyung Gyu Park in collaboration with Dr. Tiziana Bond has developed a sensor that greatly amplifies the sensitivity of commonly used but typically weak vibrational spectroscopic methods, such as Raman spectroscopy. This type of sensor makes it possible to detect molecules present in the tiniest of concentrations.


Scientists at ETH Zurich and the Lawrence Livermore National Laboratory (LLNL) in California have developed an innovative sensor for surface-enhanced Raman spectroscopy (SERS). Thanks to its unique surface properties at nanoscale, the method can be used to perform analyses that are more reliable, sensitive and cost-effective. In experiments with the new sensor, the researchers were able to detect a certain organic species (1,2bis(4-pyridyl)ethylene, or BPE) in a concentration of a few hundred femtomoles per litre. A 100 femtomolar solution contains around 30 trillionth of a gram of this organic species in one liter of solution. Until now, the detection limit of common SERS systems was in the nanomolar range, i.e. some millionth of a gram of organic matters per liter. The results of a study conducted by Hyung Gyu Park, Professor of Energy Technology at ETH Zurich, and Tiziana Bond, Capability Leader at LLNL, were published this week as a cover article in the scientific journal Advanced Materials.
Raman spectroscopy takes advantage of the fact that molecules illuminated by fixed-frequency light exhibit ‘inelastic’ scattering closely related to the vibrational and rotational modes excited in the molecules. Raman scattered light differs from common Rayleigh scattered light in that it has different frequencies than that of the irradiating light and produces a specific frequency pattern for each substance examined, making it possible to use this spectrum information as a fingerprint for detecting and identifying specific substances. To analyse individual molecules, the frequency signals must be amplified, which requires that the molecule in question either be present in a high concentration or located close to a metallic surface that amplifies the signal. Hence the name of the method: surface-enhanced Raman spectroscopy.

Amplified signals for improved reproducibility

“This technology has been around for decades,” explains Ali Altun, a doctoral student in the group led by Park at the Institute of Energy Technology. With today’s SERS sensors, however, the signal strength is adequate only in isolated cases and yields results with low reproducibility. Altun, Bond and Park therefore set themselves the goal of developing a sensor that massively amplifies the signals of the Raman-scattered light.
The substrate of choice turned out to be vertically arranged, caespitose, densely packed carbon nanotubes (CNT) that guarantee this high density of ‘hot spots’. The group developed techniques to grow dense forests of CNTs in a uniform and controlled manner. The availability of this expertise was one of the principal motivations for using nanotubes as the basis for highly sensitive SERS sensors, says Park.

A spaghetti-like surface

The tips of the CNTs are sharply curved, and the researchers coated these tips with gold and hafnium dioxide, a dielectric insulating material. The point of contact between the surface of the sensor and the sample thus resembles a plate of spaghetti topped with sauce. However, between the strands of spaghetti, there are numerous randomly arranged holes that let through scattered light, and the many points of contact – the ‘hot spots’ – amplify the signals. “One method of making highly sensitive SERS sensors is to take advantage of the contact points of metal nanowires,” explains Park. The nano-spaghetti structure with metal-coated CNT tips is perfect for maximising the density of these contact points.
Indeed, Bond explains, the wide distribution of metallic nano-crevices in the nanometre range, well recognised to be responsible for extreme electromagnetic enhancement (or hot spots) and highly pursued by many research groups, has been easily and readily achieved by the team, resulting in the intense and reproducible enhancements.
The sensor differs from other comparable ultra-sensitive SERS sensors not only in terms of its structure, but also because of its relatively inexpensive and simple production process and the very large surface area of the 3D structures producing an intense, uniform signal.

A breakthrough on two levels

Initially, the researchers only coated the tips of the CNTs with gold. The first experiments with the BPE test molecule showed them that they were on the right track, but that the detection limit could not be reduced to quite the degree they had hoped. Eventually, they discovered that the electrons required on the gold layer surface for generating what is referred to as plasmon resonance were flowing out via the conductive carbon nanotubes.
The task was then to figure out how to prevent this plasmonic energy leakage. The researchers coated the CNTs with hafnium oxide, an insulating material, before applying a layer of gold. “This was the breakthrough,” says Altun. The insulation layer increased the sensitivity of its sensor substrate by a factor of 100,000 in the molar concentration unit. “For us as scientists, this was a moment of triumph,” agrees Park, “and it showed us that we had made the right hypothesis and a rational design.” The key to the successful development of the sensor was therefore twofold: on the one hand, it was their decision to continue using CNTs, whose morphology is essential for maximising the number of ‘hot spots’, and on the other hand, it was the fact that these nanotubes were double-coated.
Park and Bond would now like to go one step further and bring their new principle to market, but they are still seeking an industry partner. Next, they want to continue improving the sensitivity of the sensor, and they are also looking for potential areas of application. Park envisions installation of the technology in portable devices, for example to facilitate on-site analysis of chemical impurities such as environmental pollutants or pharmaceutical residues in water. He stresses that invention of a new device is not necessary; it is simple to install the sensor in a suitable way. Other potential applications include forensic investigations or military applications for early detection of chemical or biological weapons, biomedical application for real-time point-of-care monitoring of physiological levels, and fast screening of drugs and toxins in the area of law enforcement.

Thursday, August 22, 2013

Two become one with the 3D NanoChemiscope



Unique surface analysis instrument

The 3D NanoChemiscope is a miracle of state-of-the-art analysis technology. As a further development of well-known microscopic and mass spectroscopic methods, it maps the physical and chemical surfaces of materials down to the atomic level. This instrument, which is unique in the world, not only delivers high-definition images; it also knows what it is "seeing".

The result of a combined three-dimensional ToF-SIMS-/SFM surface analysis of a PCBM/CyI-polymer blend used by Empa's Functional Polymers Laboratory to produce organic solar cells.

What do a penguin and the surface of a solar cell have in common? Not a lot concedes Empa physicist Laetitia Bernard. Yet she must have smiled when, while processing an image of a polymer blend required to produce a new type of organic solar cell, at a certain point she could make out more and more clearly the outline of a penguin. A small detail in the complex world of high-performance microscopy. The 3D NanoChemiscope, which was developed at Empa, not only maps samples with nanometre precision, but for the first time can also provide precise information about which chemical elements are arranged where in a sample. This enables both mechanical properties, such as hardness, elasticity or friction, and chemical properties of surfaces to be determined simultaneously in three dimensions. In the case of the "penguin” image, this means that the 3D NanoChemiscope not only captures the outline of the "penguin", but also detects which polymers are located at its "beak", at its "eye" and "around" it. Using this analysis technique, the solar cell researchers are able to efficiently control the mechanisms of their materials and adapt the composition or concentration of their polymer blend accordingly. This enables new structures and therefore leads to better performances of the solar cell to be created.



Some of the many individual images from which the 3D NanoChemiscope generated the 3D view. 
The SFM scans the topography of the surface (The image on the left shows a section 12µm x 12µm in size. The differences in height visible in the image measure 100-200nm). 

With the TOF-SIMS, it is possible to identify where the different materials or polymers in the polymer blend are located on the surface (The images in the middle and on the right show C-+C2- and CN-+I- ions).

Scanning force microscope and high-end mass spectrometer

This analysis is made possible by the 3D NanoChemiscope, which combines two previously independent techniques. The scanning force microscope (SFM) scans the surface with an ultra-fine tip, while the time-of-flight secondary ion mass spectrometer (ToF-SIMS) determines the material composition of the first surface mono-layer by "shooting" metallic ions at it.

Up to now, in order to study both the chemical and physical properties of surfaces, it was necessary to analyse the sample in two different instruments. However, when transporting the sample from one instrument to the other, there was always a danger of contamination or oxidation. In addition, it was practically impossible to find the exact location scanned by the SFM again. What, therefore, could be more appropriate than to "combine" the two instruments? In a four-year project sponsored by the EU, project leader Laetitia Bernard, together with Empa researchers and partners from academia and industry, has carried out meticulous work to develop a new instrument in which an SFM and a ToF-SIMS are placed in an ultra-high vacuum chamber as near to each other as possible.



Mechanical engineer Sasa Vranjkovic and Laetitia Bernard, leader of the 3D NanoChemiscope project, discussing the construction drawing of a component.

The microscope experts have also equipped the 3D NanoChemiscope with a novel transport system developed in-house, which uses piezomotors to move the sample gently back and forth on tracks coated with a diamond-like carbon layer (DLC). The sample holder can move along five axes, allowing the location under investigation to be analysed from any angle.

Following its construction, the prototype – a monster made of gleaming aluminium 1 metre long, 70 centimetres wide and 1.7 metres tall – has been in operation at project partner ION-TOF GmbH in Münster, Germany, where it is being used by industrial clients and research partners. The construction of more instruments is planned, customers having expressed a keen interest and being prepared to pay sums over one million Swiss francs.