Showing posts with label thermoelectric. Show all posts
Showing posts with label thermoelectric. Show all posts

Wednesday, May 7, 2014

Discovery Creates a Better Chance for Clean Energy Research

This is a magnified image of a new thermoelectric 
material discovered by University of Houston researchers.
Credit: University of Houston
UH Researchers Find First New High-Efficiency Thermoelectric Material in 60 Years

University of Houston physicists have discovered a new thermoelectric material offering high performance at temperatures ranging from room temperature up to 300 degrees Celsius, or about 573 degrees Fahrenheit.
“This new material is better than the traditional material, Bismuth telluride, and can be used for waste heat conversion into electricity much more efficiently,” said Zhifeng Ren, M.D. Anderson Chair professor of physics at UH and the lead author of a paper describing the discovery, published online by Nano Energy.
Ren, who is also principal investigator at the Texas Center for Superconductivity at UH, said the work could be important for clean energy research and commercialization at temperatures of about 300 degrees Celsius.
Bismuth telluride has been the standard thermoelectric material since the 1950s and is used primarily for cooling, although it can also be used at temperatures up to 250 C, or 482 F, for power generation, with limited efficiency.
For this discovery, Ren and other members of his lab used a combination of magnesium, silver and antimony to generate electricity from heat using the thermoelectric principle. They added a small amount of nickel, after which Ren said the compound worked even better.
The work was done in collaboration with researchers from the UH Department of Chemistry and the Massachusetts Institute of Technology. Huaizhou Zhao and Jiehe Sui, a member of Ren’s lab whose home institute is the Harbin Institute of Technology in China, were primary contributors; Zhao is now a research scientist at the Institute of Physics with the Chinese Academy of Sciences.
The material works well up to 300 C, Ren said; work to improve its efficiency is ongoing.
The potential for capturing heat – from power plants, industrial smokestacks and even vehicle tailpipes – and converting it into electricity is huge, allowing heat that is currently wasted to be used to generate power. Ren said temperatures there can range from 200 C to 1,000 C, and until now, there hasn’t been a thermoelectric material capable of working once conditions get beyond the lower levels of heat. Much of the demand ranges from 250 C to 300 C, he said.
Ren long has worked in thermoelectrics, among other scientific fields. His research group published an article in the journal Science in 2008 establishing that the efficiency – the technical term is the “figure of merit” – of Bismuth telluride could be increased as much as 20 percent by changing how it is processed. At the time, Ren was at Boston College.  
And his lab last summer published a paper in the Proceedings of the National Academy of Sciences establishing tin telluride with the addition of the chemical element indium as a material capable of converting waste heat to electricity. But tin telluride works best at temperatures higher than about 300 C, or about 573 F, making it important to continue looking for another material that works at lower temperatures.
Ren’s group isn’t the first to study the new material, which has not been named but is referred to in the Nano Energy paper as simply MgAgSb-based materials, using the chemical names for the elements used to create it. The paper cites work done in 2012 by M.J. Kirkham, et al; that work used magnesium, silver and antimony in equal parts, Ren said, but resulted in impurities and poor conducting properties.  
He said his lab found that using slightly less silver and antimony, and mixing the elements separately – putting magnesium and silver first in the ball milling process, adding the antimony after several hours – eliminated the impurities and significantly improved the thermoelectric properties.
“We had much different qualities,” he said. “Better, with no impurities, and smaller grain size, along with much better thermoelectric properties.”
http://www.uh.edu/news-events/stories/2014/May/0507RenThermoelectrics.php

Tuesday, November 19, 2013

The Attractive Properties of Core-Shell Nanorods

Researchers at Rensselaer discovered a new method
to create “branched” nanorods, as seen in this
scanning electron microscope image.
Such nanorods could one day enable new
nanoscale thermoelectric devices for power
generation, as well as nanoscale heat pumps
for cooling hot spots in nanoelectronics devices.
Photo Credit: Rensselaer/Ramanath
Because of their attractive properties, core-shell nanorods are expected to one day enable the development of new nanoscale thermoelectric devices for power generation, as well as nanoscale heat pumps for cooling hot spots in nanoelectronics devices. 

“Our discovery enables the realization of two very important attributes for heat dissipation and power generation from heat,” Ramanath said. “First, the core-shell junctions in the nanorods are conducive for heat removal upon application of an electrical voltage, or generating electrical power from heat. Second, the branched structures open up the possibility of fabricating miniaturized conduits for heat removal alongside nanowire interconnects in future device architectures.”

The researchers discovered that synthesis at high temperatures or with low amounts of the biomolecular surfactant L-glutathonic acid (LGTA) yields branched nanorod structures in highly regulated patterns. In contrast, synthesis at low temperatures or with high levels of LGTA results in straight nanorods without any branching. It is interesting to note that at the point of branching, atoms in the branch resemble a mirror image of the parent crystal – a finding that reinforces Ramanath’s conclusion that LGTA is able to induce branching through atomic-level sculpture. 

“Since LGTA is similar to biological molecules, our discovery could be conceivably used as a starting point to explore the use of proteins and enzymes to atomically sculpt such nanorod architectures through biological processes,” said Ramanath

Results of the study, titled “Surfactant-Directed Synthesis of Branched Bismuth Telluride/Sulfide Core/Shell Nanorods,” were recently published online and will be featured in an upcoming issue of the journal Advanced Materials


The full study may be viewed at: http://dx.doi.org/10.1002/adma.200702572 

Along with Ramanath and Purkayastha, co-authors of the paper include: Theodorian Borca-Tasciuc, associate professor of mechanical, aerospace and nuclear engineering at Rensselaer; Rensselaer materials science and engineering postdoctoral researcher Huafang Li; Rensselaer graduate students Makala S. Raghuveer and Darshan D. Gandhi; as well as materials science and engineering professor Raju V. Ramanujan, assistant professor Qingyu Yan, and postdoctoral researcher Zhong W. Liu of Nanyang Technological University in Singapore.