Showing posts with label piezoelectric. Show all posts
Showing posts with label piezoelectric. Show all posts

Friday, December 6, 2013

Squeezing transistors really hard generates energy savings

Transistors, the workhorses of the electronics world, are plagued by leakage current. This results in unnecessary energy losses, which is why smartphones and laptops, for example, have to be recharged so often. 

Tom van Hemert and Ray Hueting of the University of Twente’s MESA+ Institute for Nanotechnology have shown that this leakage current can be radically reduced by “squeezing” the transistor with a piezoelectric material (which expands or contracts when an electrical charge is applied to it). Using this approach, they have smashed the theoretical limit for leakage current. Tom van Hemert will defend his PhD dissertation on 6 December.

If silicon is squeezed, this affects the freedom of movement of the electrons in this material. This can promote or restrict the flow of electrical current. Compare it to a garden hose. When you stand on it, less water comes out. But strangely enough, the flow of electrons in silicon actually increases when the material is compressed.

ONLY PINCH WHEN NECESSARY

In modern microchips, every single transistor is continuously exposed to enormous pressures of up to 10,000 atmospheres. This pressure is sealed in during the manufacturing process, by surrounding the transistors with compressive materials. While this boosts the chip’s processing speed, the leakage current also increases. The use of piezoelectric material means that the transistors are only put under pressure when this is necessary. This can generate considerable savings in terms of energy consumption.
The electrical current passing through a transistor is conducted by a slice of silicon. In the new transistor, this is sandwiched between layers of piezoelectric material. As this material (shown in red) expands, the silicon (shown in blue) is compressed.

LIMIT SMASHED

The underlying concept was originally developed by Ray Hueting. In order to turn this into reality, Tom van Hemert had to find a way of linking theories of mechanical deformation with quantum-mechanical formulas describing the electrical behaviour of transistors. The calculations indicate that “garden hose transistors” are much better than conventional transistors at switching from off to on. According to the classical theoretical limit, a charge of at least 60 millivolts is needed to make a transistor conduct ten times more electricity. The piezoelectric transistor uses just 50 millivolts. As a result, either the leakage current can be reduced, or more current can be carried in the on-state. Either way, this will boost the performance of modern microchips, while - importantly - cutting their energy consumption.

The results of this research were recently published in a leading journal, Transactions on Electron Devices. On 6 December, Tom van Hemert hopes to be awarded a Phd for his dissertation, which is entitled “Tailoring strain in microelectronic devices”.

Tuesday, December 3, 2013

KAIST developed the biotemplated design of piezoelectric energy harvesting device

First row: Schemes of each step to explain biotemplated nanogenerator 
fabrication by using genetically engineered virus. Second row: Electron 
microscopy of each step in biotemplated synthetic processes and digital 
photograph of the flexible biotemplated nanogenerator. Right inset shows
the driven LED optical fibers by the energy harvester.
Credit: KAIST
A research team led by Professor Keon Jae Lee and Professor Yoon Sung Nam from the Department of Materials Science and Engineering at KAIST has developed the biotemplated design of flexible piezoelectric energy harvesting device, called "nanogenerator."

Nature has its own capabilities to spontaneously synthesize and self-assemble universal materials with sophisticated architectures such as shells, sea sponges, and bone minerals. 

For instance, the natural sea shell, consisting of calcium carbonate (CaCO3), is very rigid and tough whereas the artificial chalk made by the same material is fragile. In addition, most of artificial syntheses are performed under toxic, expensive and extreme environments in contrast to the natural syntheses, which are processed in benign and mild surroundings. If human can mimic these biological abilities, a variety of ecological and material issues can be solved.

The KAIST team modified a M13 viral gene, which is harmless to human and widely exist in nature, to utilize its remarkable ability of synthesizing a highly piezoelectric inorganic material, barium titanate (BaTiO3). By using this biotemplated piezoelectric material, a high-output flexible nanogenerator could be fabricated with an enhanced performance. The flexible piezoelectric nanogenerator that converts mechanical energy of tiny movements into electrical energy is an attractive candidate for the next generation energy harvesting technology. This biotemplated nanogenerator will drive commercial LCD screens and LED bulbs by simple finger movements.

Professor Lee said, "This is the first time to introduce a biotemplated inorganic piezoelectric material to a self-powered energy harvesting system, which can be realized through eco-friendly and efficient material syntheses."


###

The research result was published in the November online issue of the American Chemical Society's journal, ACS Nano (Virus-Directed Design of a Flexible BaTiO3 Nanogenerator). In addition, the team also extended their research to a large-area and mass producible "PZT based nanocomposite generator," which was published in the December issue of Advanced Energy Materials, a Wiley-VCH journal.

Source: http://www.kaist.edu/english/index.php